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Abstract
Background  The comprehensive annotation of repeated sequences in genomes is an essential prerequisite for 
studying the dynamics of these sequences over time and their involvement in gene regulation. Currently, the 
diversity of repeated sequences in Citrus genomes is only partially characterized because the annotations have been 
performed using heterogeneous bioinformatics tools, each with its specificity and dedicated only to the annotation 
of transposable elements.

Results  We combined complementary repeat-finding programs including REPET, CAULIFINDER, and TAREAN, 
to enable the identification of all types of repetitive sequences found in plant genomes, including transposable 
elements, endogenous caulimovirids, and satellite DNAs. A fine-grained annotation method was first developed 
to create a consensus sequence library of repeated sequences identified in the genome assemblies of C. medica, C. 
micrantha, C. reticulata, and C. maxima, the four ancestral parental species involved in the formation of economically 
valuable cultivated Citrus varieties. A second, faster annotation method was developed to enrich the dataset by 
adding new repeated sequences retrieved from genome assemblies of other Citrus species and closely related species 
belonging to the Aurantioideae subfamily. The final reference library contains 3,091 consensus sequences, of which 
94.5% are transposable elements. The diversity of endogenous caulimovirids was characterized for the first time 
within the genus Citrus, contributing 160 consensus sequences to the final reference library. Finally, 10 satellite DNAs 
were also identified.

Conclusion  Combining multiple repeat detection methods enables the comprehensive annotation of all repeated 
sequences in Citrus genomes. Using the final reference library reported in this work will improve our understanding 
of the dynamics of repeated sequences during Citrus speciation, particularly following the genome duplication and 
hybridization events that led to modern cultivars. The exploration of repeat position insertions along chromosomes 
using the developed web interface, RepeatLoc Citrus, will also make it possible to further investigate the role of 
transposable elements and endogenous caulimovirids in genome structure and gene regulation in Citrus species.
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Background
Over the last two decades, cost reductions and improve-
ments in DNA sequencing technologies have led to an 
exponential increase in plant genome assemblies [1]. This 
trend has stimulated the development of several bioin-
formatics tools dedicated to the annotation of repetitive 
sequences, also known as the “repeatome”, which repre-
sent a significant fraction of most eukaryotic genomes 
[2]. The characterization of repeated sequences has 
revealed their ubiquity in plant genomes [3–6]. Trans-
posable elements (TEs) are genetic sequences that can 
replicate in large numbers and insert into chromosomes 
[7–9]. Initially dismissed as “junk DNA”, TEs are now rec-
ognized as key players in genome dynamics and species 
evolution [10]. In many plants, they have contributed to 
the emergence of new phenotypes by acting as cis-reg-
ulatory elements, modifying the chromatin landscape 
around genes, mediating gene duplication, and disrupt-
ing coding sequences [6, 11–13]. For example, TE inser-
tions have been linked to variation in the fruit color of 
Chardonnay grape clones [14] or to sex determination 
in melon [15]. In tomato, the elongated fruit phenotype 
has been linked to a TE-mediated duplication of the SUN 
locus [16], and the yellow color of fruit flesh in several 
genotypes has been linked to a TE insertion in the PSY1 
locus [17]. Recent studies have demonstrated the involve-
ment of TEs in the variation of key agronomic traits in 
maize and rice species and confirmed the need to take 
them into account when breeding new varieties [18–21]. 
Satellite DNAs, or long tandem repeats, are also found 
in plant genomes, particularly at centromeres, but are 
sometimes concentrated in other specific chromosomal 
regions [22–24]. Unlike TEs, they cannot self-replicate, 
but unequal recombination during meiosis and poly-
merase replication splicing contribute to their accumula-
tion in large numbers in genomes [25]. They are mainly 
involved in genome structure and chromosome stability 
by participating in the formation of heterochromatin. In 
addition to TEs and satellite DNAs, plant genomes often 
contain endogenous caulimovirids (ECVs), another class 
of repetitive DNA sequences [26]. ECVs result from the 
integration of genomic sequences from members of the 
viral family Caulimoviridae during infections [27–30]. 
Their integration into their host genomes is not an 
obligatory step in their replication cycle but is thought 
to occur during the repair of DNA breaks [26]. To date, 
their role in the structure and evolution of plant genomes 
is poorly understood.

It is well established that repeated sequences such as 
TEs play a role in genomic structural variations caus-
ing phenotypic variations observed in vegetatively 

propagated crops [19, 31, 32]. The phenotypic diversity 
observed in sweet orange cultivars has been directly 
linked to specific TE insertions near host genes and 
shown to be involved in traits such as blood color, apo-
mixis, and acidity changes [33–39]. Given the high eco-
nomic value of citrus fruits, with an annual production 
of over 100 million tons in 2023, there is a particular 
relevance in integrating repeatome annotation data into 
breeding schemes for new citrus varieties [40, 41]. Whole 
genome annotations of repetitive sequences have been 
achieved for several Citrus spp., but further analyses 
showed that only a fraction of the repeated sequences 
were identified. Indeed, retrotransposons, LINEs (long 
interspersed nuclear elements), and MITEs (miniature 
inverted repeat transposable elements) were best charac-
terized, but their estimated abundances in the analyzed 
genomes depended on the annotation methods and the 
quality of genome assemblies. For example, in sweet 
orange (C. x aurantium var. sinensis), the relative amount 
of Copia and Gypsy elements varies between 15.3% and 
24.2% of the genome according to the different annota-
tion methods used [38, 39, 42–44]. Other types of TEs, 
such as Helitrons and SINEs, remain to be fully identi-
fied, resulting in an underestimation of their abundance 
and diversity. Furthermore, the diversity of ECVs within 
Citrus genomes has not been comprehensively deter-
mined. However, several studies have indicated their rela-
tively high density in sweet oranges, at 2.3 copies per Mb, 
compared with an average of 0.2 copies per Mb in the 
genomes of other seed plants [29, 45].

In this context, our main objective is to determine 
the comprehensive diversity of repeated sequences in 
the genomes of Citrus spp. and related species from the 
Aurantioideae subfamily through the annotation of TEs, 
ECVs, and satellite DNAs (especially macrosatellites). 
Using several pipelines, two complementary annotation 
methods were developed to construct a reference consen-
sus sequence library that is representative of the repeated 
sequences found in the genomes of primitive, wild, and 
cultivated Citrus spp. [46–48]. It is anticipated that this 
library will serve as a gold standard for the annotation 
of Citrus genomes, which will facilitate the study of the 
insertion dynamics of repeated sequences and their roles 
in genome structure and clonal variation in this botanical 
genus.

Development of a Citrus reference library
Fine-grained annotation of transposable elements (TEs)
We performed a fine-grained annotation of the repeated 
sequences found in the genome assemblies of the four 
ancestral taxa C. medica, C. micrantha, C. reticulata, 
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and C. maxima, which are the progenitors of the major 
cultivated citrus varieties [46, 49] (Fig. 1; Table 1). This 
annotation was first implemented on genome assem-
blies for each progenitor using the REPET v3.0 package 
[50–52]. According to statistics of assembly data, only 
a subgenome was analyzed for each species. These sub-
genomes are made up of “virtual contigs” or “chunks” 
obtained by removing stretches of > 11 undefined bases 
(Ns) to exclude gaps in these sequences. Only chunks 
longer than 500 kbp in C. medica and chunks lon-
ger than 100 kbp in C. micrantha, C. reticulata, and 
C. maxima were conserved, covering 93–96% of the 
genome assemblies. The REPET TEdenovo pipeline 
was used to detect all repeated sequences in the subge-
nomes and to generate libraries of consensus sequences 
representative of each TE family (setting parameters: at 
least 3 sequences per group, Grouper, Recon, and Piler 
clustering, no remove redundancy). The consensus 
sequences were then classified with the PASTEC classi-
fier (included in the TEdenovo pipeline [52]) according 
to structural and functional features based on character-
ized TEs from the RepBase23.12 database [53, 54], the 
library of profiles from Pfam32.0 [55] and the GyDB2.0 
database [56] specially formatted for REPET. All con-
sensus sequences classified as simple sequence repeats 
(SSR), rDNA, potential host genes (PHG; containing 
host gene Pfam domains), and unclassified sequences 
built with less than 10 copies per cluster were removed 
from the TE libraries. After filtering, TE libraries of 
13,483, 10,957, 11,451, and 12,958 consensus sequences 
were obtained for C. medica, C. micrantha, C. reticulata, 
and C. maxima, respectively (Fig.  1). Each TE library 
was used to annotate the genome assembly from which 
it was generated, using the TEannot pipeline included 
in REPET (default parameters). This step resulted in an 
estimated TE coverage of 56% in C. medica, 51% in C. 
micrantha, 52% in C. reticulata, and 55% in C. max-
ima. To refine the annotation of TEs, TE libraries were 
again filtered to retain only consensus sequences with 
at least one full-length fragment (FLF) in the genome 
(i.e. a fragment covering more than 95% of the consen-
sus sequences), and then a second TEannot run was 
performed. This iterative process resulted in the filtered 
TE libraries of 3,579, 4,469, 4,427, and 3,834 consensus 
sequences for C. medica, C. micrantha, C. reticulata, 
and C. maxima, respectively, with a reduced TE cover-
age of 1–3% depending on the species (Fig. 1). All con-
sensus sequences were manually curated using copy 
coverage plots, structural and functional features (ORFs, 
tandem repeats, polyA tail, protein domain HMM pro-
files, SSR, and BLAST results), and MCL clustering. 
This manual curation allowed us to classify some TEs at 
the family level, identify ECVs that would otherwise be 

automatically classified as TEs, and reclassify some inac-
curately classified consensus sequences (Additional files 
2 and 3). To reduce intra-species redundancy, consen-
sus sequences that fully aligned to a longer other con-
sensus sequence with an identity greater than 80% were 
removed from each TE library following the Wickers’ 
rule [8] and using Cd-hit v. 4.8.1 [57].

In addition to REPET, several other TE detection 
programs were used. First, the EDTA pipeline [65] was 
launched on the four genomes to validate the struc-
ture of the REPET predictions and to solve annotation 
conflicts encountered with the PASTEC classifier. Con-
sensus sequences generated using EDTA and qualified 
as Helitron were specifically studied. Their structures 
were confirmed using DANTE, the TE protein domain 
identification tool included in the RepeatExplorer 
pipeline [66], and novel Helitrons were added to the 
TE libraries. In parallel, the four Citrus assemblies 
were analyzed using a collection of TE structure-based 
tools, including LTR_STRUC searching for LTR ret-
rotransposons [67], MUSTv2, MITE-Hunter search-
ing for MITEs [68, 69], and SINE-Finder searching for 
short interspersed nuclear elements (SINEs) [70]. For 
each Citrus species, these newly detected consensus 
were added to the respective TE libraries, and redun-
dant sequences were filtered out using Cd-hit with the 
same parameters as above.

Finally, the four TE libraries were combined, and inter-
specific redundancy was reduced using Cd-hit cluster-
ing. This resulted in a fine-grained annotation library of 
2,875 consensus sequences representative of the diversity 
of TEs (2,720 consensus sequences) and ECVs (155 con-
sensus sequences) found in the four ancestral Citrus taxa 
(Fig. 1, Additional file 1).

Annotation of endogenous caulimovirid sequences (ECVs)
Special attention was dedicated to the identification of 
ECVs. The 155 ECVs consensus sequences identified in 
the four ancestral taxa using the TEdenovo pipeline were 
included in the fine-grained annotation library (Fig. 1). Dur-
ing consensus sequence quality checks, sequences contain-
ing a movement protein domain (MP), which is a hallmark 
of Caulimoviridae genomes, were temporarily classified as 
ECVs. To confirm their classification as ECVs, the 155 con-
sensus sequences were compared with the custom library of 
reverse transcriptase (RT) protein sequences from known 
caulimovirids and LTR retrotransposons used by CAULI-
FINDER, a pipeline specifically designed for the specific 
annotation of ECVs [71]. Consensus sequences displaying a 
best hit against caulimovirid RTs with e-values < 1e- 06 fol-
lowing BLASTx analyses were retained as ECVs in the fine-
grained annotation library.
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Fig. 1  Schematic representation of the fine-grained method employed for de novo annotation of repeated sequences in the four ancestral Citrus taxa 
C. medica, C. micrantha, C. reticulata, and C. maxima. Results from the different bioinformatics tools REPET, EDTA, MUST, TAREAN, and CAULIFINDER were 
combined to produce a reference fine-grained annotation library of 2,883 consensus sequences representative of the diversity of all repeated sequences 
retrieved in Citrus. The numbers shown in the species-specific colored boxes indicate the number of consensus sequences and their genome coverage 
obtained using the TEannot pipeline. ECV: Endogenous Caulimovirid element; FLF: Full Length Fragment; PHG: Potential Host Gene; rDNA: ribosomal 
DNA; SSR: Simple Sequence Repeat; TE: Transposable Element
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Annotation of satellite DNAs
Finally, satellite DNAs (tandem repeats) were identified 
using TAREAN [72] (Fig.  1). Briefly, this pipeline per-
forms a graph-based clustering from libraries of paired-
end Illumina reads. Clusters with circular topology are 
isolated, and monomer units of the satellite DNAs are 
characterized. For each ancestral taxon, a sample of 
1 million paired-end reads was randomly extracted from 
Illumina libraries used for genome assemblies (Table  1) 
and analyzed by TAREAN. To avoid redundancy, satel-
lite DNAs detected in the four genome assemblies were 
aligned with each other using BLASTn [73] and only 
those with sequence identity < 80% and e-values < 1e- 06 
were conserved. In total, eight different satellite DNAs 
were identified and added to the fine-grained annotation 
library (Table 2, Additional file 1).

Enrichment of the fine-grained annotation library with 
repeated sequences from other Citrus and related species
To be more inclusive of the diversity of the repeated 
sequences found across the Citrus genus, we extended 
our search to the assembled genomes of 8 other Citrus 
species and two related species Atalantia buxifolia and 
Murraya koenigii (Table  1). A second, faster annotation 
method was developed to reduce the execution time com-
pared to the fine-grained method (Fig.  2). This method 
uses the same combination of repeat-finding programs 
but skips some steps and uses the fine-grained annotation 
library as a reference. Firstly, the TEdenovo pipeline was 
used on DNA chunks longer than 20kbp, deriving from 
the sampling of the genome assemblies. The resulting 
consensus sequence libraries were filtered by removing 
PHG, rDNA, SSR sequences, and unclassified sequences 
built with < 10 copies per cluster as described above. In 
addition to the REPET pipeline, TAREAN, and MITE-
Hunter were also used to annotate the satellite DNAs and 
the MITEs in each genome assembly, respectively. Using 
BLASTn, consensus sequences without sequence homol-
ogy to TEs, ECVs, or satellite DNAs already present in 
the fine-grained annotation library were retained (set-
ting parameters: < 80% of identity, e-value < 1e- 06). They 
were manually curated and classified as described above 
and then added to the fine-grained annotation library.

The annotation of the 10 extra genomes using the faster 
method led to the identification of 208 additional new 
consensus sequences, corresponding to 201 TEs, 5 ECVs, 
and 2 satellite DNAs (Additional file 1). In total, the final 
reference library contains 3,091 consensus sequences 
representative of the diversity of repeated sequences, 
including 2,921 TEs (94.5%), 160 ECVs (5.2%), and 10 
satellite DNAs ranging in size from 141 to 181 bp (0.3%) 
(Fig. 3; Table 2) [74]. Among annotated TEs, 1,905 con-
sensus sequences are retrotransposons (Class I elements) 
and 949 are DNA transposons (Class II elements).

A benchmark for the annotation of repeated sequences in 
Citrus genomes and their role in genome dynamics
There is currently no standard method for the annotation 
of all repeated sequences in assembled genomes. Multiple 
bioinformatic programs can be used, but each has its own 
specificity, resulting in variable precision levels in the anno-
tation, depending on the nature of the repeats. Here, we 
propose two complementary methods for the annotation 
of all repeated sequences in Citrus genomes, including TEs, 
ECVs, and satellite DNAs (Figs. 1 and 2). These annotation 
methods allowed us to construct the first comprehensive 
reference consensus sequence library of Citrus repeats. 
This final reference library paves the way to the accurate, 
reproducible, and standardized quantification of repeated 
sequences in Citrus genomes. Just as the fine-grained 
method can be reused to annotate repeated sequences in 

Table 2  Classification and number of repeated sequences 
included in the final reference library

Number of 
consensus 
sequences

Retrotransposons (Class I elements)
  LTR Copia (RLC) Tork 302

Sire 191
Retrofit 379
Oryco 47
Unclassified RLCs 28

  LTR Gypsy (RLG) Athila 216
Tat 168
Crm 50
Reina 118
Del 48
Galadriel 24
Unclassified RLGs 5

  LINEs (RIX) 320
  SINEs (RSX) 5
  Unclassified Class I 4
DNA transposons (Class II elements)
  TIRs Mutator (DTM) 279

hAT (DTA) 223
CACTA (DTC) 107
Pif-Harbinger (DTH) 74
Tc1-Mariner (DTT) 20
Unclassified TIRs (DTX) 1

  MITEs Unclassified MITEs (DXX-MITE) 175
hAT (DTA-MITE) 11
Mutator (DTM-MITE) 30
Pif-Harbinger (DTH-MITE) 3

  Helitron (DHX) 26
Unclassified TEs 67
TOTAL Transposable Elements 2 921
ECVs (Endogenous Caulimovirids) 160
Satellite DNAs 10
TOTAL Repeated sequences 3 091
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other plant genomes (Fig. 1), the final reference library can 
be enriched by annotating newly assembled Citrus genomes 
using the second, faster method described in this paper 
(Fig. 2). The final reference library contains the diversity of 
repeated sequences identified in twelve citrus species either 
from the divergent speciation including the four ances-
tral species (citron, papeda micrantha, wild mandarin, and 
pummelo), or from the reticulate speciation with the four 
cultivated species, sweet orange, clementine satsuma man-
darin and limon. In future, the quick annotation of new 
assembled citrus genomes will facilitate repeated sequences 
detection and improved their study in citrus species.

In 2019, Liu et al. [75] annotated five different Citrus 
genomes (C. x aurantium var. sinensis, C. x aurantium 
var. clementina, C. medica, C. ichangensis and C. maxima) 
and built a library of 450 consensus sequences, includ-
ing 340 L retrotransposons and 110 MITEs. We compared 
this library with our final reference library using BLASTn 
(e-value < 1e- 06). This comparison revealed that 423 of the 
450 consensus sequences were common to both libraries, 
representing only 13.7% of the repeat diversity found in our 
final reference library (Fig. 4). The comparison showed that 
45 consensus sequences from the study of Liu et al. were 

incorrectly classified (e.g. 7 MITEs consensus sequences 
corresponded to LTR retrotransposons, 6 L retrotransposon 
sequences corresponded to satellite DNAs, and 27 consen-
sus sequences had no homology with either sequences of 
our final reference library or sequences in the RepBase23.12 
database (BLASTn; e-value < 1e- 06). More recently, Wu et 
al. [76] developed a pan-genome TE library of 21,680 TEs 
consensus sequences based on the genome annotation of 14 
Citrus and 6 related species, compared with our final refer-
ence library of 3,091 consensus repeated sequences from 14 
Citrus and 2 related species. The sequence library of Wu et 
al. is unpublished, precluding its comparison with our final 
reference library. However, using seven times fewer consen-
sus sequences, our library and method revealed the diversity 
of TEs, ECVs, and satellite DNAs found in Citrus spp.

The Citrus consensus sequence library developed in 
this study will significantly improve the study of the TEs, 
ECVs, and satellite DNAs dynamics in Citrus. It will 
enable the comparison of repeated sequence counts and 
locations in Citrus species that diverged following the 
allopatric speciation that occurred in the last 6–8 mil-
lion years [48, 77]. The comparison of ancestral paren-
tal taxa and admixed species will also enable a better 

Fig. 2  Schematic representation of the method used to annotate repeated sequences in other Citrus species and related species. Compared to the fine-
grained method, multiple steps were skipped to reduce execution time, and the fine-grained annotation library was used as a reference. A final reference 
library of 3,116 consensus sequences was built containing the diversity of TEs, ECVs, and satellite DNAs identified in Citrus and related species

 



Page 8 of 13Giraud et al. BMC Genomic Data           (2025) 26:30 

characterization of the consequences of hybridizations 
and whole genome duplication events on the dynamics of 
TEs [19, 78–81]. The tools and methods described in this 
paper could also help unravel the role of TEs and ECVs 
in some phenotypic variations observed in vegetatively 
propagated crops such as sweet oranges [34–37, 39]. 
Finally, the comprehensive annotation of ECVs in Citrus 
genomes will allow a better understanding of their puta-
tive role in genome architecture, gene regulation, and 
their integration dynamics in plant genomes.

RepeatLoc Citrus: visualize and explore the repeatome of 
the Citrus genomes
To enhance the study of repeated sequences in Citrus 
genomes, we developed an interface to visualize and 
analyze TEs, ECVs, and satellite DNAs along the nine 

chromosomes of the four Citrus ancestor species. This 
interface, called RepeatLoc Citrus, has been imple-
mented through the Citrus Genome Hub (​h​t​t​p​​s​:​/​​/​c​i​t​​r​u​​
s​-​t​​o​o​l​​s​-​g​e​​n​o​​m​e​-​​h​u​b​​.​s​o​u​​t​h​​g​r​e​e​n​.​f​r​/​r​e​p​e​a​t​l​o​c​/; accessed 
4 April 2025), a publicly available web portal that offers 
the possibility to study and compare the genomes of Cit-
rus species. Following the selection of the query Citrus 
species, users can visualize the density and positions of 
repeated sequences along the chromosomes (Fig. 5). For 
each type of repeated sequence, the number of copies 
and their coverage on each chromosome is available from 
arborescent entries corresponding to the different lev-
els of TEs, ECVs, and satellite DNA classification. Users 
can also explore specific positions on chromosomes and 
extract detailed information about genes and repeated 
sequences by following the link to the Genome Browser 

Fig. 3  Classification of the repeated sequences contained in the final reference library. Numbers in parentheses refer to the number of consensus se-
quences and the associated percentage

 

https://citrus-tools-genome-hub.southgreen.fr/repeatloc/
https://citrus-tools-genome-hub.southgreen.fr/repeatloc/
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Fig. 4  Comparison of repeated sequences composing the final reference library of Citrus and the library generated by Liu et al. [75]. Horizontal bars 
represent the number of consensus sequences identified for each TE family, ECVs, or satellite DNAs in the final reference library (left) and in the Liu et al. 
library (right, classified according to best-hit match with the final reference library)
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Fig. 5 (See legend on next page.)
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(JBrowse). The addition of new genome assemblies in 
future updates of RepeatLoc Citrus will strengthen the 
analysis of the repeatome within the Citrus genus.

Conclusion
In this study, we combined several dedicated pipelines 
to build a final reference library of 3,091 consensus 
sequences representing the diversity of Citrus transpos-
able elements, endogenous caulimovirids, and satellite 
DNAs. This library provides important resources for 
studying the dynamics of repeated sequences in Citrus 
genomes and their role in phenotypic variations and spe-
ciation. To complement the existing citrus databases on 
genomic, expression and variation data (​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​i​t​r​​
u​s​g​​e​n​o​m​​e​d​​b​.​o​r​g​/; http://citrus.hzau.edu.cn/; ​h​t​t​p​:​/​/​c​i​t​g​v​
d​.​c​r​i​c​.​c​n​/​h​o​m​e​​​​​; http://www.orangeexpdb.com/, accessed 
29 March 2025), the development of the online interface, 
RepeatLoc Citrus (tool included in the Citrus Genome 
Hub), will improve the localisation of repeated sequences 
along the chromosomes and highlight their putative 
involvement in altering gene regulation.
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