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Introduction
The effective panicle number of rice and grain number 
per panicle are both major factors affecting rice yield [9]. 
Generally, the effective panicle number of rice shows a 
proportional relationship with production, while grain 
number per panicle, panicle length, and grain density are 
closely related.

Several studies have extensively reported on important 
agronomic traits and QTLs in rice and other crops. The 
application of molecular markers for QTL analysis in 
tomatoes followed later [15]. Effective panicle number, 
which is influenced by the number of tillers and individ-
ual spikelets, has a direct impact on overall production. 
Therefore, studying the QTLs controlling effective pani-
cle number is of great importance. For instance, through 
the use of the NIL-F2 (F3) population, the QTL-qPN1 
controlling effective panicle number was successfully 
localized to a specific 34.4  kb region on chromosome 1 
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Abstract
Rice production has been a primary concern in crop quality breeding. In this study, India japonica variety M494 
and indica variety Z9B were used as parents. Hybridization and selfing were conducted to obtain recombinant 
inbred lines (RILs) as the experimental material. The F3 and F7 populations were analyzed to determine six yield-
related traits, including panicle length, effective panicle number, number of grains per panicle, seed setting rate, 
yield per plant, and grain density. QTL mapping of rice yield-related traits and tillering angle was performed using 
the SSR molecular marker linkage map, resulting in the identification of 19 QTLs controlling panicle length, grain 
number per panicle, effective panicle number, seed setting rate, grain density.
Additionally, multiple regression analysis and path analysis were employed to investigate the relationship 
between different agronomic traits and rice yield in the F7 population. An optimal regression equation, 
YYPP = -24.515 + 0.694XPL + 1.273XPN + 0.007XPPG + 18.981XSSR was derived, and it was concluded that SSR was the trait 
with the greatest impact on YPP, followed by PL.
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of rice [33]. Similarly, using NILs, researchers were able 
to locate the micro-effect QTL-qHd1 controlling rice 
heading date to a 95.0 kb region on the long arm of chro-
mosome 1. This QTL not only affects heading date but 
also influences the number of effective panicles, grains 
per panicle, and yield per plant [3]. The number of grains 
per panicle, which is influenced by the number of pri-
mary and secondary branches, spikelets on branches, and 
seed setting rate, is a crucial trait affecting rice yield. In 
a notable study, a research team successfully localized a 
major QTL, qGn1a (Grain number 1a), which controls 
the number of grains per panicle in rice, within a 6.3 kb 
region on chromosome 1 [2]. Numerous QTLs regulating 
grain number per spike have been reported both domes-
tically and internationally, including QTL-gpa7, QTL-
qSPP7, QTL-An-1, QTL-GNP1, and QTL-LF1 [10, 24, 27, 
29, 30].

This study utilized the Indian japonica rice variety 
M494 as the primary material and performed QTL iden-
tification and genetic analysis on yield-related traits of 
rice. The analysis was conducted using a recombinant 
inbred line population obtained through hybridization 
with the indica rice Z9B. Multiple regression analysis and 
path analysis were employed to construct a regression 
model for the F7 population of the recombinant inbred 
lines, enabling an analysis of the influence of different 
agronomic traits on individual plant yield. The research 
employed molecular biotechnology to conduct a compre-
hensive investigation into the genetic patterns associated 
with rice yield-related traits, including the identification 
of molecular markers linked to these traits. The findings 
lay the groundwork for subsequent fine mapping and 
cloning efforts, while also providing a theoretical founda-
tion and reference for genetic enhancement of relevant 
traits and the cultivation of new rice varieties with high 
yield and quality.

Materials and methods
Construction of RILs
The parental rice varieties utilized in this study were the 
Indian japonica rice variety M494 and indica rice variety 
Zhong9B (Z9B). These varieties were obtained from the 
National Rice Germplasm Bank of China National Rice 
Research Institute.

The population utilized in this study consisted of 
recombinant inbred lines (RILs) derived from the hybrid-
ization and subsequent selfing of M494 and Z9B. Spe-
cifically, the F3 and F7 generations of the RIL population 
were used. The RIL population consisted of a total of 144 
lines.

For the QTL mapping of rice yield-related traits, the F3 
and F7 generations of the RIL population were employed.

Furthermore, the F7 generation of the RIL population 
was used for multiple regression analysis and path analy-
sis of different agronomic traits in relation to individual 
plant yield.

Rice cultivation
The F3 population was cultivated at the China National 
Rice Research Institute Hangzhou Fuyang Experimen-
tal Base during the summer of 2018. Subsequently, the 
F7 population was planted at the China National Rice 
Research Institute Hainan Lingshui Experimental Base in 
the winter of 2021.

A completely randomized block design was employed 
in this study, with three replicates. Each replicate con-
sisted of six rows, and within each row, there were six 
individual plants. The spacing between plants was set at 
20 cm × 25 cm. The field management followed a conven-
tional management mode.

Measuring item
QTL mapping of yield related traits in rice was conducted 
using F3 and F7 recombinant inbred line populations to 
classify and statistically analyze six differential traits, 
namely panicle length (PL), effective panicle number 
(PN), grains per panicle (PPG), seed setting rate (SSR), 
grain density (GD), and yield per plant (YPP).

Multiple regression analysis and path analysis were 
performed using the F7 recombinant inbred line popu-
lation to investigate the relationships between different 
agronomic traits and single plant yield. A total of six dif-
ferential traits were considered in the analysis, including 
PL, PN, grains per panicle (PPG, SSR, GD, and YPP. The 
statistical analysis aimed to assess the impact of these 
traits on single plant yield. Refer to Table 1 for detailed 
information on these traits (Table 1).

Determination method
For the investigation of yield-related traits, the follow-
ing methodology was employed. After rice maturity, the 
plants were harvested on a per-plant basis, and various 
agronomic traits related to yield were examined. Prior to 
threshing, measurements were taken for panicle length, 
effective panicle number, and grain number per pan-
icle. Three replicates were set, and the average values 
were recorded. Following threshing, the yield per plant 
was evaluated, and calculations were made for the seed 

Table 1  The agronomic traits, abbreviations, and types of traits 
involved in this study
Traits Abbreviation Traits type
panicle length PL quantitative trait
effective panicle number PN quantitative trait
the number of grains per panicle PPG quantitative trait
seed setting rate SSR quantitative trait
yield per plant YPP quantitative trait
grain density GD quantitative trait
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setting rate and seed density. The number of grains per 
panicle was measured using a fully automatic seed count-
ing analyzer (SC-G type, Hangzhou Wanshen Co., Ltd.). 
The seed setting rate per plant was calculated by dividing 
the actual number of grains per plant by the total num-
ber of grains per plant, while the seed density was cal-
culated by dividing the number of grains per panicle by 
the length of the panicle. Data statistics were performed 
using Excel, and correlation analysis, t-tests, and fre-
quency distribution maps between traits were conducted 
using IBM SPSS Statistics 26 and GraphPad Prism 8.

Selection and identification of molecular markers
In the preliminary work, the researchers of the research 
group utilized the Gramene website (http://www.
gramene.org/) to select a total of 562 SSR markers with 
good genome coverage for detecting polymorphism 
between the parents Z9B and M494. Among these mark-
ers, 114 showed polymorphism between the two par-
ents. From these, 85 molecular markers that were evenly 
distributed across the 12 chromosomes were further 
screened. These 85 SSR markers were then used for gen-
otype identification of the F3 and F7 populations, which 
consisted of 144 strains. The distribution range of poly-
morphic markers on each chromosome varied from 
5.88% to 14.12%, with an average of 8.33%.

DNA isolation, PCR amplification, and electrophoresis.
Genomic DNA from the parental and RIL populations 
was extracted by CTAB. Take 0.1  g of fresh leaf tissue, 
grind in liquid nitrogen and add 1 mL CTAB of extrac-
tion buffer (2% CTAB, 100 mM Tris–HCl pH 8.0,20 mM 
EDTA, 1.4 M NaCl) in a 65℃ water bath for 1 h. After 
centrifugation, the supernatant was removed, an equal 
volume of chloroform-isoamyl alcohol (24:1) was added, 
and isopropanol precipitated DNA. The DNA was 
washed in 70% ethanol and then dissolved in TE buffer.

PCR reaction system (20 μ L): 10 Buffer 2 μL, dNTPs 
0.2 mM, 0.5 μ M each of primers, 1 U of Taq enzyme, and 
50  ng of DNA template. Amplification procedure: 94℃ 
pre-denaturation for 5  min; 94℃ 30  s, 55℃ 30  s, 72℃ 
1 min, 35 cycles; 72℃ extension for 10 min. The ampli-
fied products were visualized by 8% non-denaturing 
polyacrylamide gel electrophoresis (voltage 120 V for 2 h) 
and stained with silver nitrate.

Construction of genetic map and QTL analysis
The clear bands observed in the gel map were recorded, 
and the analyzed genotype data were statistically orga-
nized. The Mapmaker/Exp3.0 software was used to con-
struct a molecular marker genetic linkage map based 
on this data. The recombination rate between markers 

was converted into genetic map distance (cM) using 
the Kosambi function. Using the constructed molecular 
marker genetic map, QTL mapping of different agro-
nomic traits was performed using Windows QTL Car-
tographer 2.5 software. A LOD score of ≥ 2.5 for the 
marker interval was considered indicative of potential 
QTLs controlling the trait in that interval. Additionally, 
the contribution rate (R2) and additive effects of each 
trait were calculated, and QTLs with R2 ≥ 3 were selected 
as the results and given specific names [12].

Multiple regression analysis and path analysis
Using Excel software, statistical analysis was performed 
on the F7 population to calculate the average, standard 
deviation, and coefficient of variation for the six pheno-
types, including PL, PN, PPG, SSR, GD, and YPP. SPSS 
Statistics 26 and GraphPad Prism 8 were used for fur-
ther analysis. Scatter plots were created to visualize the 
relationships between variables, and Pearson correla-
tion analysis [14] was conducted to examine the cor-
relations between different traits. Univariate linear 
regression analysis was performed to assess the relation-
ship between individual plant yield and each agronomic 
trait. Multiple regression analysis [16] was used to ana-
lyze the combined effects of multiple traits on yield. The 
regression model is: YYPP = b0 + bPLXPL + bPNXPN + bPPGXPP

G + bSSRXSSR, where Y is the dependent variable, X is the 
independent variable, b0 is a constant term, and b is the 
regression coefficient of each variable. Additionally, path 
analysis [8] was employed to explore the direct and indi-
rect effects of different agronomic traits on yield.

Results and discussion
Performance of yield correlation data among parents, F3, 
and F7 populations
The six differential traits, namely PL, PN, PPG, SSR, GD, 
and YPP, were classified and statistically analyzed using 
the F3 and F7 recombinant inbred line populations. The 
high-value parent for PL, PN, TGW, and YPP was found 
to be Z9B, while the high-value parent for PPG, SSR, and 
GD was M494. Significant differences were observed 
among the six traits of the parents. In general, the aver-
age values of these traits in the F3 population were higher 
than those in the F7 population. Furthermore, the varia-
tion range of each trait in both populations exceeded the 
phenotypic values of the parents (Table 2). The frequency 
distribution of phenotypes indicated that all traits exhib-
ited a super parental advantage (Figs. 1 and 2).

Based on these results, it can be inferred that PL, PN, 
PPG, YPP, SSR, and GD possess genetic characteristics of 
quantitative traits, which make them suitable for further 
QTL analysis.

http://www.gramene.org/
http://www.gramene.org/


Page 4 of 14Liu et al. BMC Genomic Data           (2025) 26:27 

QTL Identification of yield related traits in F3 and F7 
populations
A total of 10 QTLs were detected on chromosomes 1, 
2, 3, 4, and 10 of rice using the F3 population to control 
the PPG, SSR, PL, TGW, and GD. It includes 1 QTL for 
PL (qPL2), 4 QTLs for PPG (qPPG1-1, qPPG2-1, qPPG, 
and qPPG4), 1 QTL for SSR (qSSR1), and 4 QTLs for GD 
(qGD1, qGD3, qGD4, and qGD10) (Fig. 3, Table 3).

A total of 12 QTLs were detected on chromosomes 1, 
2, 3, 8, 10, and 11 of rice using the F7 population to con-
trol PL, PN, PPG, GD, and TGW. There are 3 QTLs for 
PL (qPL2, qPL10, and qPL11), 4 QTLs for PPG (qPPG1-2, 
qPPG2-2, qPPG3, and qPPG11), 3 QTLs for PN (qPN2, 
qPN8, and qPN10), and 2 QTLs for GD (qGD2 and 
qGD3) (Fig. 3, Table 3).

In summary, a total of 19 QTLs for yield related traits in 
rice were identified using F3 and F7 populations, among 
which 3 QTLs were detected repeatedly (qPL2, qPPG3, 
and qGD3) (Fig. 3, Table 3).

Multiple regression analysis of different agronomic traits 
and yield per plant in F7 population
Six differential traits were classified and statistically ana-
lyzed using the F7 recombinant inbred line population, 
including PL, PN, PPG, SSR, GD, and YPP. The variation 
range of PL is 15.00–28.00 cm, the variation range of PN 
is 3.00–15.00, the variation range of PPG is 63.00–307.00, 
the variation range of SSR is 0.23–0.92, the variation 
range of GD is 3.43–13.90, and the variation range of YPP 
is 1.42–29.23 g. Among these traits, the CV value of YPP 
is the highest at 34.66%, while the CV value of PL is the 
lowest at only 8.84% (Table 4).

In the F7 population, the YPP was highly signifi-
cantly positively correlated with PPG, SSR, PN, and 
PL (P < 0.01), but not significantly correlated with GD 
(Table  5). Excluding GD, the scatter plot and univariate 

linear regression show a linear correlation trend between 
the PPG, SSR, PN, PL, and YPP (Fig. 4).

The regression model obtained through multiple linear 
regression analysis is YYPP = −24.515 + 0.694XPL + 1.273
XPN + 0.007XPPG + 18.981XSSR, indicating that the varia-
tion in YPP is positively caused by four personality traits: 
PL, PN, PPG, and SSR. The dependent variable increases 
with the increase of a certain independent variable value; 
In the t-test results, the significance of the monitoring 
values for each trait was Sig < 0.05, indicating a relatively 
stable relationship between the independent and depen-
dent variables expressed in the model; In the collinear-
ity statistical test results, the VIF values are all close to 
1, indicating that there is no obvious multicollinear-
ity between the four traits, that is, the regression model 
obtained is stable and accurate (Tables 6, 7 and 8).

In the residual analysis, the vast majority of residual 
points are randomly distributed within the (−2, 2) inter-
val, indicating that the residual sequence is randomly 
distributed, satisfying the assumptions of the regression 
model (Fig. 5a). Furthermore, the standard residual nor-
mal distribution diagram shows that the model residuals 
follow a roughly normal distribution (Fig. 5b). Based on 
these results, it can be concluded that the constructed 
model is stable and accurate. Based on the above results, 
the stability and accuracy of the model construction 
results can be demonstrated.The regression model coef-
ficient of determination R2 = 0.725, indicating that 72.5% 
of YPP variation was explained by PL, PN, PPG, SSR, and 
the residual effect (1-R2 = 0.275) suggests that other unde-
tected factors (such as environmental error or microef-
fect QTL) contributed 27.5% of the variation. Residual 
analysis showed that the data were fit to a normal distri-
bution (Fig. 5b), DW = 1.672 (near 2), no autocorrelation, 
and the model was robust.

Table 2  Phenotypic values of yield-related traits in parents, F3 and F7 populations
Traits Generations F3 and F7 RIL Populations Parents

Mean Range Skewness Kurtosis M494 Z9B
PL(cm) F3 22.93 19.2–29.1 0.30 1.18 24.4 26.2**

F7 20.35 15.0–28.0 0.55 −0.32
PN F3 9.94 2.0–21.0 0.52 0.55 10 12**

F7 8.24 3.0–15.0 0.34 −0.45
PPG F3 171.90 88.0–280.0 0.29 −0.31 206.4** 155.2

F7 159.86 75.0–255.0 0.60 −0.18
SSR F3 0.62 0.24–0.94 −0.27 0.35 0.75** 0.68

F7 0.66 0.23–0.96 −0.89 0.87
GD F3 7.46 4.3–10.6 0.13 −0.41 8.3** 6.2

F7 7.35 3.4–13.9 0.49 −0.04
YPP(g) F3 19.97 3.94–38.64 0.55 0.06 17.33 20.67**

F7 16.64 4.42–29.23 −0.19 −0.61
**indicates a significant at the 0.01 level
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Path analysis of different agronomic traits and single plant 
yield in F7 population
The analysis of path coefficients provides insights into 
the direct and indirect effects of independent vari-
ables on the dependent variable. The direct path coef-
ficient represents the strength and direction of the 
relationship between an independent variable and the 
dependent variable, while the indirect path coefficient 
reflects the influence of one independent variable on the 

dependent variable through another independent vari-
able. In the analysis results of path coefficients (Table 9), 
it is observed that all four traits have a positive impact on 
YPP, indicating that an increase in these traits leads to an 
increase in YPP. The largest direct impact on YPP is from 
SSR, with a path coefficient of 0.629, followed by PN with 
a path coefficient of 0.380. On the other hand, PPG has 
the smallest direct impact on YPP, with a path coeffi-
cient of 0.050. Additionally, the indirect path coefficients 

Fig. 1  Phenotype frequency distribution of yield-related traits in F3 population of Z9B/M494. a panicle length b panicle number per plant c grains per 
panicle d seed setting rate e grain density f grain yield per plant
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reveal the influence of one independent variable on YPP 
through another independent variable. For example, PL 
has the greatest positive impact on YPP through SSR, 
with an indirect path coefficient of 0.193. Conversely, 
PL has the greatest negative impact on YPP through PN, 
with an indirect path coefficient of −0.055. Considering 
the total path coefficients, which are the sum of the direct 
and indirect path coefficients, it can be concluded that 
SSR has the highest total path coefficient on YPP (0.740), 
indicating the strongest overall impact. PL also shows a 
substantial total path coefficient of 0.420 on YPP.

These findings demonstrate the importance and contri-
butions of each trait to the variation in YPP. SSR and PL 
emerge as significant factors with strong direct effects on 
YPP, while PN and PPG also exhibit considerable direct 
impacts. The path coefficients provide valuable infor-
mation for understanding the relationships and relative 
importance of these traits in influencing YPP.

Stability of QTL detection in different populations
The performance of quantitative traits is not only closely 
related to genes, but also influenced by environmental 

Fig. 2  Phenotype frequency distribution of yield-related traits in F7 population of Z9B/M494. a panicle length b panicle number per plant c grains per 
panicle d seed setting rate e grain density f grain yield per plant

 



Page 7 of 14Liu et al. BMC Genomic Data           (2025) 26:27 

changes, so the detection results of the same trait in dif-
ferent populations may not be consistent, or the detec-
tion results of the same population in different years or 
planting environments may also be inconsistent [1, 21, 
31]. This study utilized a recombinant inbred line popu-
lation derived from M494/Z9B to locate QTLs for six 
agronomic traits related to yield. A total of 19 QTLs 
were detected, distributed within 15 marker intervals 
on chromosomes 1, 2, 3, 4, 8, 10, and 11, respectively, 
controlling PL, PPG, PN, SSR, and GD. No QTLs were 
detected that controlled YPP. Among the detected QTLs, 
10 QTLs were identified using the F3 population, while 
12 QTLs were identified using the F7 population. Impor-
tantly, 3 QTLs were repeatedly detected in both popula-
tions, accounting for 30% of the total QTLs detected in 
the F3 population and 25% of the total QTLs detected in 
the F7 population. These QTLs were QTL-qPL2 located 
on chromosome 2 controlling PL, QTL-qPPG3 and 

QTL-qGD3 located on chromosome 3 controlling PPG 
and GD (Fig.  3, Table  4). These 3 QTLs controlling dif-
ferent traits were jointly detected by two populations, 
indicating that they have stable genetic effects. In addi-
tion, we found that among the 3 QTLs detected repeat-
edly, qPPG3,and qGD3 had a contribution rate of over 
10.00% in both tests; Only qPL2 had a contribution rate 
of 6.79% lower than 10.00% in the F3 population, and the 
additive effects of these 3 QTLs measured in both popu-
lations were consistent. This can indicate that QTLs with 
high contribution rates can be stably expressed even in 
different environments [26, 28, 32]. These QTL loci with 
high phenotypic contribution rates and stable expression 
in different environments have greater value for molecu-
lar marker assisted selection breeding. The results in this 
study found that the QTLs controlling SSR and PN had 
low effect size and contribution rate, which may also be 

Fig. 3  Chromosomal distribution of QTLs controlling yield-related traits in F3 and F7 populations of Z9B/M494
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one of the reasons why stable QTLs were not detected 
between different populations of these two traits.

The pleiotropy of QTL
The study confirmed the existence of QTL pleiotropy, 
which refers to the simultaneous influence of multiple 
traits by QTLs on the same chromosome within the 
same interval. This phenomenon is common in animals 
and plants and can be attributed to various genetic fac-
tors such as single-cause pleiotropy, gene overlap, or 

gene linkage [6, 19, 23]. In the current study, out of the 
19 QTLs detected on 7 chromosomes of rice, 14 QTLs 
were found to control two traits within the same chro-
mosome and marker interval. This accounts for 73.7% of 
the total QTLs detected. These QTLs were distributed on 
chromosomes 1, 2, 3, 4, and 11 (Fig. 3, Table 4). Notably, 
significant correlations were observed between certain 
traits controlled by QTLs within specific intervals. For 
example, in the F3 population, highly significant positive 
correlations were found between PPG and GD controlled 

Table 3  Summary of QTL identified in this study
QTL Chr Interval Distance

(cM)
LOD Additive Additive

source
R2 Population

qPPG1-1 1 RM1095-RM8231 6.8 4.81 23.496 Z9B 20.91 F3

qGD1 1 RM1095-RM8231 6.8 4.48 0.681 Z9B 14.42 F3

qSSR1 1 RM3252-RM6289 9.1 2.51 −0.009 M494 3.73 F3

qPPG1-2 1 RM3252-RM6289 9.1 2.53 23.686 Z9B 19.87 F7

qPL2 2 RM530-RM3542 4.5 2.84 −0.596 M494 6.79 F3

3.09 −1.041 16.8 F7

qPPG2-1 2 RM530-RM3543 4.5 2.75 −10.871 M494 4.41 F3

qPN2 2 RM7426-RM1303 4.1 3.06 −0.420 M494 4.00 F7

qPPG2-2 2 RM6617-RM13903 5.0 3.28 −12.656 M494 4.93 F7

qGD2 2 RM6617-RM13903 5.0 3.66 −0.719 M494 8.01 F7

qPPG3 3 RM15087-RM3646 6.5 10.61 −30.289 M494 35.64 F3

3.48 −21.59 18.12 F7

qGD3 3 RM15087-RM3646 6.5 14.33 −1.189 M494 45.2 F3

3.72 −0.913 16.35 F7

qPPG4 4 RM5979-RM17303 6.3 2.78 −16.067 M494 9.10 F3

qGD4 4 RM5979-RM17303 6.3 3.5 −0.593 M494 10.12 F3

qPN8 8 RM22957-RM3452 7.9 2.65 −0.649 M494 9.04 F7

qGD10 10 RM24952-RM216 2.9 3.07 −0.508 M494 7.40 F3

qPL10 10 RM216-RM26559 7.4 2.67 2.894 Z9B 87.98 F7

qPN10 10 RM26774-RM25648 1.0 3.40 −0.536 M494 9.57 F7

qPL11 11 RM2459-RM26308 4.6 2.82 3.268 Z9B 82.12 F7

qPPG11 11 RM2459-RM26308 4.6 2.6 −8.433 M494 3.56 F7

Table 4  Statistical data of related quantitative traits in F7 population of Z9B/M494
Content PL(cm) PN PPG SSR GD YPP/g
Max 28.00 15.00 307.00 0.92 13.90 29.23
Min 15.00 3.00 63.00 0.23 3.43 3.42
Mean 20.34 8.27 149.75 0.66 7.35 13.67
Standard Deviation 1.80 1.41 35.92 0.16 1.60 4.74
Coefficient of Variation 8.84% 17.08% 23.98% 23.71% 21.84% 34.66%

Table 5  Correlation coefficient among traits of Z9B/M494 F7 population
Traits PPG SSR YPP PN PL GD
PPG 1
SSR 0.178* 1
YPP 0.233** 0.741** 1
PN −0.092 0.057 0.367** 1
PL 0.387** 0.307** 0.420** −0.146 1
GD 0.921** 0.06 0.074 −0.037 0.013 1
**indicates a significant correlation at the 0.01 level
*indicates significant correlation at the 0.05 level
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Table 6  Regression model analysis of different traits and yield per plant in rice
Model Unnormalized coefficient Normalization coefficient t Sig Collinearity statistics

B Standard error Beta Tolerance VIF
−24.515 2.952 −8.305 0.001

PL 0.694 0.136 0.263 5.085 0.000 0.778 1.286
PN 1.273 0.156 0.380 8.177 0.000 0.967 1.034
PPG 0.007 0.007 0.050 1.002 0.038 0.843 1.186
SSR 18.981 1.460 0.629 13.005 0.001 0.891 1.122

Table 7  Test of fitting degree of prediction model between yield per plant and different traits
Model R R2 Adjusted R2 Error in standard estimation Durbin-Watson value

0.851a 0.725 0.717 2.53161 1.672
aDependent variable: YPP

Table 8  F-test for optimal model
Model Sum of squares df Mean square Sig
Regression 2229.978 4 557.495 0.000b

Residual 845.992 132 6.409
Total 136
bPredictive variables: PL, PN, GPP, SSR, TGW

Fig. 4  Scatter plot of yield per plant and other 7 traits in F7 population of Z9B/M494. X-axis: a panicle length b panicle number per plant c grains per 
panicle d seed setting rate, Y-axis:grain yield per plant
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by two QTLs located within the RM1095-RM8231 inter-
val of chromosome 1. Similarly, highly significant positive 
correlations were observed between PPG and PL con-
trolled by two QTLs within the RM530-RM3543 interval 
of chromosome 2. Moreover, a highly significant positive 
correlation was detected between PN and GD controlled 
by two QTLs within the RM5979-RM17303 interval of 
chromosome 4. The F7 population also exhibited highly 
significant positive correlations between PPG and GD 
controlled by two QTLs located within the RM6617-
RM13903 interval of chromosome 2, as well as between 
PPG and PL controlled by two QTLs within the RM2459-
RM26308 interval of chromosome 11. Additionally, two 
QTLs controlled by the RM15087-RM3646 interval on 
chromosome 3, detected in both F3 and F7 populations, 
showed highly significant correlations between PPG and 
GD (Tables 10 and 11).

Based on the results of this study, there is a highly sig-
nificant correlation between different traits controlled 
by multiple QTLs within the same interval, which fully 
proves the relationship between the pleiotropy of QTLs 
and the significance between traits. However, further 
research is needed to determine whether it is caused by 
one cause pleiotropy, gene overlap, or gene linkage.

Analysis of QTL additive effects
Additive effect is the accumulation of genotype values of 
multiple minor genes that affect quantitative traits, and 
is the main component of trait phenotype values. This 
study found that among the 4 QTLs affecting PN and 
SSR, the additive genes all came from the parent M494; 
Among the 3 QTLs that affect PL, one QTL has an addi-
tive gene from M494 and 2 QTLs from Z9B; Among the 
7 QTLs that affect PPG, 5 QTLs have additive genes from 
M494, and 2 QTLs come from Z9B; Among the 5 QTLs 

Table 9  Path coefficient analysis
Traits Path coefficient Direct path coefficient Indirect path coefficient

PL-YPP PN-YPP PPG-YPP SSR-YPP
PL 0.420 0.263 −0.055 0.019 0.193
PN 0.373 0.380 −0.038 −0.005 0.036
PPG 0.229 0.050 0.102 −0.035 0.112
SSR 0.740 0.629 0.081 0.022 0.009

Table 10  Correlation coefficient of yield-related traits in F3 population of Z9B/M494
Traits TGW PPG SSR YPP PN PL GD
TGW 1
PPG −0.407** 1
SSR −0.071 0.168 1
YPP 0.15 0.386** 0.407** 1
PN 0.083 0.176* 0.147 0.801** 1
PL 0.013 0.688** 0.304** 0.588** 0.309** 1
GD −0.498** 0.953** 0.082 0.239** 0.095 0.444** 1
**indicates a significant correlation at the 0.01 level
*indicates significant correlation at the 0.05 level

Fig. 5  Residual analysis of the multiple regression model. X-axis: a Scatter plot of residuals; b Normal p-p plot of regression standardized residual
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that affect GD, the additive genes of 4 QTLs all come 
from M494, and 1 QTL comes from Z9B. These results 
indicate that QTL enhancing genes that control PL, PPG, 
and GD exhibit a discrete distribution in M494 and Z9B. 
The results of additive effect analysis showed that among 
the 19 QTLs controlling yield related traits, M494 pro-
vided 14 additive alleles, accounting for 73.7% of the 
total. This indicates that using the japonica rice variety 
M494 for related research may provide new breeding or 
genetic resources for rice.

Comparison of QTL positioning results
This study detected a total of 19 QTLs controlling 5 agro-
nomic traits using 8 agronomic trait data from different 
populations of RILs. Among them, 3 QTLs controlling 
effective panicle number were qPN2, qPN8, and qPN10; 
7 QTLs controlling PPG, namely qPPG1-1, qPPG1-2, 
qPPG2-1, qPPG2-2, qGPP3, qGPP4, and qGPP11; 3 QTLs 
controlling PL are qPL2, qPL10, and qP11; 1 QTL for 
controlling SSR, namely qSSR1; 5 QTLs controlling GD, 
namely qGD1, qGD2, qGD3, qGD4, and qGD10.

In 2005, a Japanese research team located a QTL-Gn1 
that controls the number of grains per spike on chromo-
some 1, and further decomposed it into Gn1a and Gn1b 
loci using a NILs. Gn1a was finely located within a 6.3 kb 
region between 3A28 and 3A20 markers, with only one 
ORF, which is the OsCKX2 gene highly homologous to 
cytokinin oxidase and dehydrogenase [2]. It is located in 
the same interval as QTL-qPPG1-2, which controls the 
PPG, and QTL-qSSR-1, which controls the SSR, detected 
in this study and located within the RM3252-RM6289 
marker on chromosome 1.

In 2002, three research groups successively published 
articles on the gene sd1, which is located on the first 
chromosome of rice and has the structure of controlling 
plant height and panicle type [13, 20, 22], and its location 
is very close to that of QTL-qPPG1-1 controlling PPG 
and QTL-qGD1 controlling GD, which are located in the 
marker RM1095-RM8231 on the 1 chromosome detected 
in this study.

In 2020, QTL-qTGW2, which controls grain width and 
grain weight, was mapped within 7.6 kb between P5 and 
P6 markers on chromosome 2 of rice by using RILs, and 

this region contains only one ORF [18], which is in the 
same interval as QTL-qPL2, which controls PL and QTL-
qPPG2-1, which controls PPG, detected in this study. The 
main QTL-GS3, located in the pericentromeric region 
of chromosome 3, has a full-length cDNA of 956  bp 
and encodes a transmembrane protein consisting of 232 
amino acids, which controls not only grain length and 
weight but also grain size in rice [5, 11], which is in the 
same interval as QTL-qPPG3 controlling PPG, and QTL-
qGD3 controlling GD detected in this study, which are 
located in the rm15087-rm3646 marker on chromosome 
3.

In 2008, a grain filling defective mutant gif1 was used 
to fine map the GIF1 gene in the 32 KB region between 
the CAPS4 and CAPS8 markers on chromosome 4, 
which controls sucrose transport unloading and grain 
filling during rice grain development, thereby affecting 
grain density [25]. The GIF1 gene is close to the QTL-
qPPG4 controlling PPG and QTL-qGD4 controlling 
GD detected in this study, which is located within the 
RM5979-RM17303 marker on chromosome 4. LTBSG1, 
a developmental gene regulating panicle and grain in rice, 
was fine mapped between markers z10-13 and z10-12 on 
chromosome 10 [17], which is very close to the position 
of QTL-qPL10 controlling PL identified in this study and 
located within markers RM216-RM26559 on chromo-
some 10.

Some researchers have also detected QTLs for related 
traits on other chromosomes, such as gw2.1, a new allele 
of GW2 located on chromosome 2, affects rice glume 
shape by regulating cell proliferation. Compared with 
wild-type, the near isogenic line NIL-gw2.1 has increased 
grain length and width, thereby controlling thousand 
grain weight and effective panicles [7]. According to the 
results of previous experiments, many QTLs controlling 
traits can be detected repeatedly in different populations 
and environments. Most QTLs not only control one trait, 
but also control different traits of crops together with 
other genes. Because this study is currently in the initial 
mapping stage, it is necessary to expand the population 
to continue the fine mapping research in order to obtain 
more accurate chromosome QTL regions.

Table 11  Correlation coefficient of yield-related traits in F7 population of Z9B/M494
Traits TGW PPG SSR YPP PN PL GD
TGW 1
PPG −0.433** 1
SSR −0.059 0.178* 1
YPP 0.233** 0.233** 0.741** 1
PN 0.117 −0.092 0.057 0.367** 1
PL −0.05 0.387** 0.307** 0.420** −0.146 1
GD −0.450** 0.921** 0.06 0.074 −0.037 0.013 1
**indicates a significant correlation at the 0.01 level
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Regression analysis and path analysis
The coefficient of variation of quantitative traits can show 
the influence of a single quantitative trait on the outcome 
factors, and the greater the coefficient of variation, the 
greater the coverage of the trait on the factors affecting 
the outcome [4]. Referring to the statistics and analysis of 
crop traits, this study used the statistical data of PL, PN, 
PPG, SSR, GD, and YPP of RIL-F7 population derived 
from rice to use the significant relationship between dif-
ferent traits and YPP, excluding the traits (GD) that have 
no significant relationship with YPP, the multiple linear 
regression analysis and path analysis of the remaining 
four agronomic traits on YPP were calculated. The results 
showed that the variation of YPP was positively caused 
by four traits, including PL, PN, PPG, and SSR. The posi-
tive variation of SSR on YPP was the largest, followed by 
PL. Therefore, it can be explained that SSR and PL are 
very potential target traits in rice breeding.

The correlation analysis showed that the simple corre-
lation coefficient between SSR and YPP was the largest, 
followed by PL. The path analysis also showed that the 
direct effect of SSR on YPP was the largest, and its indi-
rect effect through other traits was also positive; Among 
the four traits, the direct path coefficient of PPG on YPP 
was the smallest, but the main effect of this trait on YPP 
was indirectly produced through the other three traits. 
Therefore, it can be seen that the SSR is the most impor-
tant factor affecting the YPP of rice, followed by the PL. 
In the process of rice cultivation and breeding, selecting 
rice varieties with higher SSR and longer PL as the main 
direction of breeding and cultivation will help to increase 
the yield of rice.

In biological research, the target traits that are easy 
to measure or not easy to be damaged can be taken as 
dependent variables by using multiple regression mod-
els and path coefficients. For rice, yield is the top prior-
ity in the process of breeding and cultivation. Although 
many related studies have analyzed the relationship 
between quantitative traits, there are few studies on the 
construction of multivariate models of yield and other 
traits. Based on the construction of multivariate models, 
this study further used t-test, F-test, residual analysis and 
Multicollinearity diagnosis to test the accuracy and sta-
bility of the regression equation. The results showed that 
PL, PN, PPG, and SSR were statistically significant in the 
equation, and the effects of different traits on YPP were 
obtained by using path coefficient. For the regression 
equation, R2 = 0.717, indicating that the five independent 
variables in the equation are most of the factors affecting 
the yield of a single plant, up to 71.7%, but there are also 
some other traits and factors that will also have a minor 
impact on the yield of a single plant, which needs further 
experimental verification.

QTL stability and environment interaction
In this study, 19 QTL were detected in the F3 and F7 
populations, and of which 3 (qPL 2, qPPG 3, qGD 3) were 
repeated in both populations. The stability of these QTL 
may be related to less environmental interference from 
their genetic effects. For example, both qPPG 3 and qGD 
3 contributed more than 10% and showed high additive 
effects (from parent M494) in both populations, sug-
gesting that their genetic background may directly affect 
yield-related traits by regulating spike morphology (e. 
g., branch number) and grain arrangement density [2]. 
However, the contribution of qPL 2 was only 6.79% in the 
F3 population and increased to 16.8% in F7, which may 
be related to increased homozygosity in the population 
genetic background or enhanced environmental fitness 
[31]. In the future, the stability of these QTL should be 
verified in multiple environments, and their interaction 
mechanism with climate factors (e. g., light and tempera-
ture conditions) should be explored.

Genetic mechanism of pleiotropic QTL
In this study, 73.7% of QTL controlled multiple traits 
within the same marker interval, such as the RM 530-
RM3543 interval of chromosome 2 regulating both PL 
and PPG. This pleiotropy may result from the following 
reasons:

Single-gene pleiotropy  For example, genes that regulate 
spike length may indirectly change the grain alignment 
density (GD), by affecting spike shaft elongation.

Gene cluster linkage  There may be multiple functional 
genes in the RM15087-RM3646 interval of chromo-
some 3, which regulate PPG and GD respectively, but 
are inheritance due to the close physical location. These 
two mechanisms need to be distinguished by fine map-
ping or transgenic validation. For example, the chromo-
some 3 region where qPPG 3 is located contains multiple 
candidate genes known to regulate spike grain number (e. 
g., OsSPL14), and whether it simultaneously affects GD 
deserves further investigation.

Possible cause for which no YPP-related QTL was detected
Although YPP was significantly associated with PL, 
PN, and SSR, a QTL directly controlling YPP was not 
detected in this study. This may be due to: trait complex-
ity: YPP is regulated by multiple gene microeffects with 
a single QTL contribution below the detection threshold 
(LOD 2.5).

Epistatic effects  Phenotypic variation in YPP may be 
driven by multiple QTL interactions (e. g., PLSSR) rather 
than a single primary QTL. In the future, the genetic net-
work of YPP can be further analyzed by genome-wide 
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association analysis (GWAS) or machine learning-based 
multi-trait models.

QTL stability and environment interaction  19 QTL, 3 
of which 3 (qPL 2, qPPG 3, qGD 3) were stably expressed 
in the dual population, with the highest contribution rate 
of 45.2% (qGD 3).

Collaborative improvement potential of pleiotropic 
QTL  the key interval of chromosomes 2 and 3 can syn-
chronously regulate PL, PG and GD to provide targets for 
molecular design breeding.

Practical significance of yield prediction model  SSR 
and PL have the largest direct effect on single plant yield, 
and the model can guide the optimization of high-yield 
plant type.

Parental genetic contribution and breeding poten-
tial  The high-frequency additive effect of M494 (73.7%) 
provides a new resource for indica-japonica hybrid breed-
ing, and its QTL (such as qPPG 3) can break through the 
intersubspecies yield limit.

Abbreviations
PL	� Panicle length
PN	� Effective panicle number
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