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Abstract 

Objectives  Chicken (Gallus gallus), as the most economically important poultry, is a classical and ideal model 
for studying the mechanism of vertebrate developmental biology and embryology. However, the sex determina-
tion and differentiation in chicken is still elusive, which limited the application and slowed down many basic studies 
in chicken.

Data description  We applied PacBio Iso-seq to multiple spatiotemporal embryo-gonad tissues in the male 
and female chicken, which contain the blastoderm (E0, un-differentiation stage), genital ridge (E3.5–6.5, sex-differen-
tiation stage) and gonads (E18.5, full-sex-differentiation stage). We obtained 51,479 and 48,356 full-length transcripts 
in male and female chicken embryo, respectively. The comprehensive annotated and evaluated these transcripts. The 
1,293 and 1,556 candidate lncRNAs, 5,766 and 4,211 AS events in male and female. Collectively, our data constitutes 
a grand increase in the known number of lncRNA, AS (Alternative splicing) and Poly(A) during chicken embryo sex-
differentiation and plays an important role in improving current genome annotation. In the meantime, the data will 
be enriched the functional studies in other birds.
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Objective
The Chicken (Gallus gallus) is widely used in develop-
mental biology and embryology due to its economic value 
in the poultry industry [1–4]. Understanding sex deter-
mination and differentiation is crucial as it impacts traits 
like growth and reproduction [5–7]. While female chick-
ens are preferred in layer breeding, males are favored 
for meat production [8]. Despite the clear Z and W sex 
chromosomes, the mechanisms behind sex determina-
tion in chickens is still elusive [9, 10]. The embryonic 
gonad originates from the genital ridge at day 3.5 (E3.5) 
and undergoes sex-specific changes by E6.5, developing 
into either ZZ testis or ZW ovary [11, 12]. Although the 
chicken genome was sequenced in 2004 and RNA-seq 
has advanced, identifying genes involved in sex differen-
tiation is still challenging [13–16]. CA Smith identified 
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Fig. 1  Experimental design and standard Iso-Seq pipeline for raw data processing
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a series of homologous genes in the Z/W chromosome 
and described the discrepancy via RNA-seq [17]. How-
ever, the Short-read sequencing is insufficient for accu-
rately identifying long non-coding RNAs (lncRNAs) and 
alternatively spliced (AS) genes, which may critical for 
this process [18–20]. The full-length (FL) RNA-seq pro-
vides a more accurate representation of lncRNA and gene 
isoforms, improving genome annotation related to sex 
differentiation.

In this study, we performed the PacBio Iso-seq for mul-
tiple spatiotemporal embryo-gonad tissues of chicken 
at different times of the developmental stages including; 
the blastoderm (E0, un-differentiated stage), genital ridge 
(E3.5–6.5, sex-differentiation stage) and gonads (E18.5, 
full-sex differentiation stage). Collectively, we obtained 
51,479 and 48,356 full-length transcripts from male and 
female chicken embryonic reproductive organs, respec-
tively. The subsequent systemic functional annotation 
of these full-length transcripts detected 1,293 and 1,556 
candidate LncRNA as well as 5,766 and 4,211 AS events 
in male and female sex-determining tissues, respectively. 
This comprehensive dataset provides valuable insights 
into the roles of lncRNAs and AS events during sex 

differentiation in chickens and is a critical resource for 
future studies on sex determination in birds. These data 
also provide a valuable resource for genomic annotation 
at different specific chicken embryological developmen-
tal stages.

Data description
The Fertilized eggs from Rugao Yellow Chicken were 
obtained from the Poultry Institute, Chinese Academy of 
Agricultural Sciences. Eggs were incubated at 37 °C with 
75% humidity using a Brinsea Incubator Ova-Easy 100. 
Embryonic tissues from both male and female chickens 
were collected at three developmental stages: blasto-
derm (E0), genital ridge (E3.5–6.5), and gonads (E18.5) 
(Fig. 1). Tissues were flash-frozen in liquid nitrogen and 
stored at -80  °C for RNA extraction and sex identifica-
tion. The RNA was extracted using TRIzol reagent, fol-
lowing the manufacturer’s protocol. RNA integrity was 
assessed using a NanoDrop2000 spectrophotometer and 
an Agilent 2100 Bioanalyzer (Data file 6). Sex identifica-
tion was conducted via PCR amplification of the Chd1 
gene, with males showing a single 580  bp band and 
females showing two bands (580 bp and 423 bp). The two 

Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession 
number)

Data file 1 Figure_1 Experimental design and standard Iso-Seq 
pipeline for raw data processing

Image file (.pdf ) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
016.​v1 [33]

Data file 2 Figure_2 The annotation statistics of male and female Image file (.pdf ) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
022.​v1 [34]

Data file 3 Figure_3 KEGG pathway and GO functional annota-
tions of the male and female full-length transcripts

Image file (.pdf ) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
028.​v1 [35]

Data file 4 Figure_4 Characterization of identified novel lncRNAs Image file (.pdf ) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
034.​v1 [36]

Data file 5 Figure_5 The total number of AS events and Poly(A) 
Sites

Image file (.pdf ) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
058.​v1 [37]

Data file 6 Table 1 The purity and completeness of RNA 
for library

Excel file (.xlsx) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
139.​v4 [38]

Data file 7 Table_2 Read number and length distribution 
after ISO-Seq analysis

Excel file (.xlsx) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
187.​v1 [39]

Data file 8 Table_3 BUSCO analysis of Transcrpt completeness Excel file (.xlsx) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
229.​v1 [40]

Data file 9 Table_4 Annotation Statistics Excel file (.xlsx) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
259.​v1 [41]

Data file 10 Table_5 The annotation of male-biased uniq-tran-
scripts

Excel file (.xls) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
274.​v1 [42]

Data file 11 Table_6 The annotation of female-biased uniq 
transcripts

Excel file (.xls) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
280.​v1 [43]

Data file 12 Table_7 The annotation of common uniq-transcripts 
in male and female

Excel file (.xls) Figshare, https://​doi.​org/​10.​6084/​m9.​figsh​are.​26841​
286.​v1 [44]

Data set 1 Pacbio of male chicken:multiple spatiotemporal 
embryo-gonad tissues

SAM file (*.bam) NCBI Sequence Read Archive (SRA), http://​ident​ifiers.​
org/​insdc.​sra:​SRX95​30712 [45]

Data set 2 Pacbio of female chicken:multiple spatiotemporal 
embryo-gonad tissues

SAM file (*.bam) NCBI Sequence Read Archive (SRA), http://​ident​ifiers.​
org/​insdc.​sra:​SRX95​30713 [46]

https://doi.org/10.6084/m9.figshare.26841016.v1
https://doi.org/10.6084/m9.figshare.26841016.v1
https://doi.org/10.6084/m9.figshare.26841022.v1
https://doi.org/10.6084/m9.figshare.26841022.v1
https://doi.org/10.6084/m9.figshare.26841028.v1
https://doi.org/10.6084/m9.figshare.26841028.v1
https://doi.org/10.6084/m9.figshare.26841034.v1
https://doi.org/10.6084/m9.figshare.26841034.v1
https://doi.org/10.6084/m9.figshare.26841058.v1
https://doi.org/10.6084/m9.figshare.26841058.v1
https://doi.org/10.6084/m9.figshare.26841139.v4
https://doi.org/10.6084/m9.figshare.26841139.v4
https://doi.org/10.6084/m9.figshare.26841187.v1
https://doi.org/10.6084/m9.figshare.26841187.v1
https://doi.org/10.6084/m9.figshare.26841229.v1
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https://doi.org/10.6084/m9.figshare.26841259.v1
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https://doi.org/10.6084/m9.figshare.26841274.v1
https://doi.org/10.6084/m9.figshare.26841274.v1
https://doi.org/10.6084/m9.figshare.26841280.v1
https://doi.org/10.6084/m9.figshare.26841280.v1
https://doi.org/10.6084/m9.figshare.26841286.v1
https://doi.org/10.6084/m9.figshare.26841286.v1
http://identifiers.org/insdc.sra:SRX9530712
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Fig. 2  The annotation statistics of male and female

Fig. 3  KEGG pathway and GO functional annotations of the male and female full-length transcripts
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iso-seq libraries were created by pooling RNA from male 
and female tissues separately. Equal amounts of RNA 
from each developmental stage (10  μg per tissue) were 
combined. cDNA was synthesized using the SMARTer 
PCR cDNA Synthesis Kit, and SMRT bell libraries were 
constructed using the Pacific Biosciences DNA Template 
Prep Kit. Sequencing was performed using the PacBio 
Sequel System(Pac Bio’s Iso-seq™). The PacBio data were 
processed and evaluated following the figured standard 
pipeline of the Iso-seq analysis (Fig.  1). Briefly, the raw 
data were processed using the SMRTlink software to 
generate circular consensus sequences (CCS). Sequences 
were refined using IsoSeq3, generating high-quality 
(HQ) non-chimeric sequences[21, 22]. HQ isoforms 

were mapped to the Galgal6 reference genome using 
minimap2 [23], and redundant sequences were collapsed 
using Cupcake-ToFU. The resulting non-redundant 
transcripts were analyzed with SQANTI2 for qual-
ity control [24]. High-quality transcripts were further 
annotated using the OrthoDB database, and sequences 
were aligned with NR, SwissProt, and COG/KOG data-
bases for functional annotation (Fig. 2 and Data file 9). 
Gene Ontology (GO) classification and KEGG pathway 
analysis were conducted for deeper insights  [25]. The-
Functional annotation was performed using databases 
like NR, SwissProt, and Pfam [26, 27]. GO terms were 
assigned to each isoform, identifying key biological pro-
cesses, cellular components, and molecular functions. 

Fig. 4  Characterization of identified novel lncRNAs
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KEGG pathway analysis classified transcripts into cel-
lular processes, metabolism, and organismal systems, 
among others (Fig.  3). A total of 1,293 male and 1,556 
female candidate lncRNAs were identified using a cus-
tomized pipeline based on CPC2, CNCI, Pfam, and 
PLEK databases [27–29].As a final outcome, the interest-
ing isoforms without coding potentials are considered 
as our candidate lncRNA(Fig. 4) [30, 31].The Alternative 
splicing (AS) events were identified using Astalavista, 
with exon skipping being the most common type (Data 
file 10, 11 and 12 ) [32]. Male tissues showed more AS 
events than female, suggesting a role in sex differentia-
tion. Poly(A) site analysis revealed differences in distri-
bution between male and female tissues, which exhibit 
the different pattern of Poly(A) site like UBP1, indicating 
that alternative polyadenylation may play a critical role 
during sex differentiation (Fig. 5). All the results indicat-
ing that the complexity and diversity of transcription is 
enhanced by AS and other post-transcription regula-
tion during chicken sex differentiation. Finally, the tran-
scripts were clustered in to total 26,089 male and 23,889 
female non-redundant transcripts which were used for 
further analysis. All data obtained from the Iso-Seq3 
analysis were listed in Data file 7. The BUSCO orthologs 
software was used to assess the transcript completion. 
As we concerned, the percentage of complete and single-
copy BUSCO genes (vertebrata_odb9 dataset, 65 species, 
2586 sequences) is 59.1% and 52.6% in male and female 
full-length transcripts, respectively (Data file 8).

Collectively, our data represent the first comprehensive 
full-length transcriptomic resource for chicken embryo 
sex differentiation, including predicted lncRNA, alterna-
tive splicing (AS) events, and Poly(A) signals identified 
through Iso-seq technology. These findings significantly 
expand the known repertoire of lncRNAs, AS events, and 
Poly(A) signals involved in chicken embryo sex differen-
tiation, contributing to improved genome annotation. 
Importantly, this data may also inform breeding strate-
gies by providing molecular insights into sex determina-
tion, offering potential applications to address challenges 
in the poultry industry related to sex differentiation. Fur-
thermore, the findings enrich functional studies in other 
bird species and provide a valuable resource for broader 
vertebrate developmental biology research.

Limitations
The long-read sequencing technology can accurately 
identify the full length of transcripts, but it still has a sig-
nificant disadvantage of a high error rate. This issue can 
be mitigated by combining it with RNA-seq. Therefore, in 
this study, the results obtained from analyzing samples of 
both sexes independently still need to be verified through 
molecular biology techniques (such as qPCR, Northern 
Bolting, Western Blotting, and in situ Hybridization) on 
these transcripts in the future.

Fig. 5  The total number of AS events and Poly(A) Sites
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Code availability
The version and parameters of main software tools are 
described below:

	 (1)	 SMARTLink: version (v6.0), parameters: pbccs.task 
options.max.length = 20,000 pbccs.task options.
min_length = 300.

	 (2)	 Cupcake-ToFU: version (v4.1), parameters: -i 0.85.
	 (3)	 BUSCO: version (v3.0.1), parameters: default.
	 (4)	 diamond: version (v0.9.7), parameters: --more-

sensitive-e 1e-5.
	 (5)	 kobas: version (v3.0), parameters: default.
	 (6)	 blast+: version (v2.6.0), parameters: -evalue 1e-10.
	 (7)	 CPC2: version (v2), parameters: default.
	 (8)	 CNCI: version (v2.0), parameters: -m ve.
	 (9)	 Pfam: version (v2015-06-02), parameters: -e_seq 

0.001.
	 (10)	   Astalavista (v4.0), parameters: default.
	(11)	  TAPIS (v1.2.1), parameters: default.
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CCS	� Circular consensus sequence
FLNC	� Full length non-chimeric sequences
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