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stands out as the most ubiquitous and well-studied mem-
ber [7]. Among many beneficial traits, strains belonging 
to the genus Aureobasidium exhibit remarkable synthe-
sis capabilities to produce a spectrum of biotechnologi-
cally interesting products, like polymalic acid, pullulan, 
extracellular enzymes, and polyol lipids (a.k.a. liamocins) 
[3, 8–10]. Additionally, Aureobasidium features polyex-
tremotolerance, which is manifest by resistance towards 
high salt concentrations, acidic and basic conditions, and 
a temperature spectrum from polar to tropical condi-
tions [11, 12]. These properties make it a potential indus-
trial production organism. As a result, a large number 
of genomes have been sequenced in the past years [1, 7, 
13–16].

Aureobasidium species are known for the production 
of a plethora of secondary metabolites, and two species 
were even named after their mainly produced secondary 

Objective
Strains belonging to the genus Aureobasidium are poly-
extremotolerant ascomycetes [1, 2]. This genus encom-
passes a diverse array of black yeasts prevalent in 
terrestrial and aquatic habitats across the globe. Boasting 
remarkable ecological versatility, Aureobasidium species 
have been isolated from soil, water, air, and even extreme 
environments like cold deserts and limestone caves [3–
6]. While other species exist, Aureobasidium pullulans 
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Abstract
Objectives  The ascomycotic yeast-like fungus Aureobasidium exhibits the natural ability to synthesize several 
secondary metabolites, like polymalic acid, pullulan, or polyol lipids, with potential biotechnological applications. 
Combined with its polyextremotolerance, these properties make Aureobasidium a promising production host 
candidate. Hence, plenty of genomes of Aureobasidia have been sequenced recently. Here, we provide the annotated 
draft genome sequence of the polyol lipid-producing strain A. pullulans NRRL 62042.

Data description  The genome of A. pullulans NRRL 62042 was sequenced using Illumina NovaSeq 6000. Genome 
assembly revealed a genome size of 24.2 Mb divided into 39 scaffolds with a GC content of 50.1%. Genome 
annotation using Genemark v4.68 and GenDBE yielded 9,596 genes.
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metabolites. While representatives of the A. melanoge-
num species often synthesize the pigment melanin [17], 
A. pullulans strains are used in industrial-scale processes 
to produce pullulan [18, 19]. A. pullulans NRRL 62042 
was isolated from a leaf in Patalung, Thailand, in 2010 
[20]. This strain was reported as a producer of various 
secondary metabolites, but is mainly known for polyol 
lipid production [20–22]. The polyol lipids produced by 
Aureobasidium are amphiphilic molecules and, as such, 
might be applicable as biosurfactants [23, 24]. Since not 
many strains feature the ability to produce these biosur-
factants, it is of particular interest to unravel the genetic 
foundation and metabolic pathways underlying polyol 
lipid synthesis.

Data description
Prior to DNA isolation, the strain A. pullulans NRRL 
62042 (ARS culture collection, Peoria, Illinois, USA) was 
grown in YPD medium for 20  h at 30  °C and 200  rpm. 
Genomic DNA was isolated using the Monarch Genomic 
DNA Purification Kit (New England Biolabs, Frank-
furt am Main, Germany). Cells were lysed mechanically 
according to the protocol provided by NEB using a bead-
beater at 6 m s− 1 for 40 s (FastPrep-24TM, MP Biomedi-
cals, Santa Ana, Kalifornien, USA). A standard genomic 
library was created using unique dual indexing, and 
paired-end 150  bp whole genome sequencing was car-
ried out on an Illumina NovaSeq 6000 (Eurofins Genom-
ics, Ebersberg, Germany). This resulted in 2,611,482,000 
sequenced bases and a genome coverage of 104x. A 
total of 17,409,870 raw reads were cleaned and filtered 
to 17,254,440 high-quality reads using fastp software for 
quality control processing [25]. For error correction and 
normalization, bbnorm was used [26]. The cleaned and 
normalized reads were assembled using SPAdes (ver-
sion 3.15.0) [27], resulting in 53 contigs (largest con-
tig: 1,570,265  bp; N50 = 1,070,283  bp; average coverage 
depth: 97) and 39 scaffolds (largest scaffold: 1,934,914 bp; 
N50 = 1,169,448  bp; average coverage depth: 97). The 
genome size was determined to be 24.2  Mb with a GC 
content of 50.1%. The quality of the assembly was eval-
uated using QUAST [28] by mapping the reads back to 
the assembly, resulting in a genome mapping of 99.98%. 
Additionally, a BUSCO analysis of the assembly was per-
formed [29, 30], yielding a score of 97.1%. Genome anno-
tation for A. pullulans 62042 was performed as described 

recently [31–33] using Genemark v4.68 [34] and Gen-
DBE [35]. For automatic annotation within the platform, 
similarity searches against different databases, including 
COG [36], KEGG [37], and SWISS-PROT [38] were per-
formed. In addition to genes, putative tRNA genes were 
identified with tRNAscan-SE [39]. In total, 9,596 genes 
were annotated. A BUSCO analysis of the predicted 
genes [29, 30] resulted in a score of 97.8%. Data sets 1 
and 2 (Table  1) were deposited in the NCBI Bioproject 
PRJNA972899 [40], Biosample SAMN35102111 [41].

Limitations
The data presented in this genome note is limited to a 
single draft genome sequence. Additionally, the genome 
sequence was generated by Illumina sequencing and is 
thus relatively fragmented. To overcome these limita-
tions, the data provided here should be set in the context 
of other sequenced Aureobasidium genomes. Further-
more, long-read sequencing methods like Nanopore 
or Pacbio sequencing could be used to generate a com-
pletely assembled genome.
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Table 1  Overview of data files/data sets
Label Name of data file/data set File types

(file extension)
Data repository and identifier (DOI or accession 
number)

Data set 1 AP_62042.custom.alignment Binary Alignment Map 
(.bam)

NCBI Sequence Read Archive
[http://identifiers.org/ncbiprotein:SRR27493674] [42]

Data set 2 AP62042sub Fasta (.fa) NCBI GenBank Database [http://identifiers.org/ncbi
protein:JASGXD010000000] [43]

http://identifiers.org/ncbiprotein:SRR27493674
http://identifiers.org/ncbiprotein:JASGXD010000000
http://identifiers.org/ncbiprotein:JASGXD010000000
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Data availability
The data described in this data note can be freely and openly accessed 
on NCBI Bioproject PRJNA972899 and Biosample SAMN35102111. The 
Whole Genome Shotgun project has been deposited at GenBank under the 
accession JASGXD000000000. The version described in this paper is version 
JASGXD010000000. Please see Table 1 for details and links to the data.
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